AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS # n2EDM HV JACOB THORNE # Design goal # 180kV operation | | nEDM 2016 | n2EDM baseline | 2EDM future | | | | | | | |-------------------------|---|---|---|--|--|--|--|--|--| | chamber | DLC & dPS | DLC & dPS | DLC & dPE | | | | | | | | diameter D | $47~\mathrm{cm}$ | $80~\mathrm{cm}$ | $100~\mathrm{cm}$ | | | | | | | | N (per cycle) | 15'000 | 121'000 | 400'000 | | | | | | | | T | $180 \mathrm{\ s}$ | $180 \mathrm{\ s}$ | $180 \mathrm{\ s}$ | | | | | | | | E | 11 kV/cm | 15 kV/cm | 15 kV/cm | | | | | | | | α | 0.75 | 0.8 | 0.8 | | | | | | | | $\sigma(f_n)$ per cycle | $9.6\mathrm{\mu Hz}$ | $4.5\mathrm{\mu Hz}$ | $2.5\mathrm{\mu Hz}$ | | | | | | | | $\sigma(d_n)$ per day | $11 \times 10^{-26} \ e \cdot \text{cm}$ | $2.6 \times 10^{-26} \ e \cdot \text{cm}$ | $1.4 \times 10^{-26} \ e \cdot \text{cm}$ | | | | | | | | $\sigma(d_n)$ (final) | $9.5 \times 10^{-27} \ e \cdot \text{cm}$ | $1.1 \times 10^{-27} \ e \cdot \text{cm}$ | $0.6 \times 10^{-27} e \cdot \text{cm}$ | | | | | | | # Power supply | Max voltage: | $\pm 250\mathrm{kV}$ | | | | | | | | |-----------------------------|--|--|--|--|--|--|--|--| | Current ranges: | ±200 μA | | | | | | | | | Voltage stability | $\leq \pm 1 \times 10^{-4} \text{ in 8h and } \leq \pm 1 \times 10^{-4} \text{K}^{-1}$ | | | | | | | | | Voltage ripples | $< 1 V_{\rm pp}$ | | | | | | | | | Max Ramp speed | $5\mathrm{kV/s}$ | | | | | | | | | $ E_{\max} - E_{rmmin} $ | ≤ 100 V | | | | | | | | | Oil free connection | | | | | | | | | | Switch for current | range $200 \mu\text{A}/200 \mu\text{A}$ | | | | | | | | | Optical RS232 interface | | | | | | | | | | Remote control of interlock | | | | | | | | | | Current mode | | | | | | | | | ### R24 HV cable | | P3/250 | | | | | |---|--|--|--|--|--| | Rated voltage | 250 kVDC | | | | | | Nominal outside diameter | 36 mm +/– 1.5 | | | | | | Coverage shielding braid | >80% | | | | | | Conductor resistance Bare Conductor @ 20°C | 6.6 mΩ/m | | | | | | Conductor resistance Red & White Cond. @ 20°C | 11.4 mΩ/m | | | | | | Minimum bending radius (dynamic / stationary) | 144 mm / 72 mm | | | | | | Insulation resistance (wires to shield) | $\geq 1 \times 10^{12} \ \Omega \cdot m$ | | | | | | Capacitance (wires to shield) | 107 pF/m | | | | | | Max. operating temperature | +70° C | | | | | | Bending radius (stationary) | 2 x D | | | | | | Bending radius (dynamic) | 4 x D | | | | | ### Custom HV feedthrough #### Possible 'limitations' in precession chamber E field - nEDM capable of achieving ±200 kV without breakdown. - Unknown how much higher we can achieve: possibly limited by CTJ, surface area effect, or from other unknown processes. - Optimisation of precession chamber is required for 250 kV operation. #### Precession chamber - 1. Avoid sharp edges on vacuum wall - 2. Electrode surface is smooth as possible - 3. Field on ground electrodes minimal - 4. Minimal field on the HV electrode - 5. Homogeneity HV lines (meas.) Insulator Aluminium # Optimising ground electrode #### Corona of the HV electrode ### Further optimisation/development - Groove geometry of precession chamber, including vacuum seal. - Quartz window geometry on the insulator. - Experimental testing of prototype feedthrough, HV and magnetic. - Construction and development of 250 kV feedthrough # Acknowledgements - Estelle Chanel (PhD student) - Andrew Mullins (Fulbright student) # Backup slides | ID | | Task
Mode | Task Name | Duration | Start | Finish | Predecessors | Resource Names | 06 Aug 18 10 Sep 18 15 Oct 18 19 Nov 18 24 Dec 18 28 Jan 19 04 Mar 19 08 Apr 19 13 May 19 17 Jun 19 22 Jul 19 26 Aug 19 30 Sep 19 04 Nov 19 09 Dec 19 13 Jan 20 17 Feb 20 23 Mar 20 27 Apr 20 01 Jun W T F S S M T W T T F S S M T W T W T F S S M T W T T F S S M T W T W T T F S S M T W T W T T F S S M T W T W T T F S S M T W T W T T T T T T T T T T T T T T T | |----|----------|--------------|---|----------|-----------------|-----------------|--------------|----------------|--| | 1 | | | T26/27 Electrode
general geometry | 152 days | | Thu
28/02/19 | | | | | 2 | | * | T26/27/28 Insulator
general geometry | | | Thu
28/02/19 | | | | | 3 | | * | T28 Quartz window
geometry | 157 days | | Sun
30/06/19 | | | | | 4 | | * | T25 HV connection
to electrode | | | Sun
31/03/19 | | | | | 5 | | * | T25 Grounding rings geometry | | | Sun
31/03/19 | | | | | 6 | | * | T25 Preliminary
drawing of
electrodes to
company | | | Mon
01/04/19 | 5,4,2,1 | | 01/04 | | 7 | | * | T20 Call for
electrode
requirements | | | Wed
31/07/19 | 22 | | | | 8 | | * | T20 Bottom
electrode support
determined | | | Wed
31/07/19 | | | | | 9 | | * | T20 Electrode
interface points
determined | | | Thu
01/08/19 | 7,8 | | 01/08 | | 10 | | * | T25 Ground shell
machining | 43 days | | Mon
30/09/19 | 9 | | | | 11 | | * | T25 HV feedthrough
250 kV designed | | Wed
01/08/18 | Fri 10/05/19 | | | | | 12 | ~ | * | T25 HV feedthrough,
sample magnetic
tests | | | Mon
28/01/19 | | | | | 13 | ~ | * | T25 HV 50 kV
prototype designed | 45 days | Sat 01/12/18 | Thu
31/01/19 | | | | | 14 | | * | T25 HV 50 kV
prototype machining | 30 days | Fri 01/02/19 | Thu
14/03/19 | 12,13 | | | | 15 | | * | T25 HV 50 kV
prototype testing | 6 days | Fri 15/03/19 | Fri 22/03/19 | 14 | | | | 16 | | * | T25 HV 100 kV
protype design | 14 days | | Thu
11/04/19 | 15 | | | | ID | Task
Mode | Task Name | Duration | Start | Finish | Predecessors | Resource Names | 06 Aug '18 10 Sep '18 15 Oct '18 19 Nov '18 24 Dec '18 28 Jan '19 04 Mar '19 08 Apr '19 13 May '19 17 Jun '19 22 Jul '19 26 Aug '19 30 Sep '19 04 Nov '19 09 Dec '19 13 Jan '20 17 Feb '20 23 Mar '20 27 Apr '20 01 Jun W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T F S S M T W T W T T F S S M T W T W T T F S S M T W T W T T F S S M T W T W T T F S S M T W T T T T W T T T T T T T T T T T T | |----|--------------|--|----------|-----------------|-----------------|--------------|----------------|--| | 17 | * | T25 HV 100 kV
protype machining | 25 days | Sat 13/04/19 | Thu
16/05/19 | 16 | | William Willia | | 18 | * | T25 HV 100 kV
prototype testing | 7 days | Fri 17/05/19 | Mon
27/05/19 | 17 | | | | 19 | * | T25 HV 250 kV
machining | 55 days | Tue
28/05/19 | Mon
12/08/19 | 11,18 | | | | 20 | * | T25 HV feedthrough
performance and
modifications | 19 days | Tue
13/08/19 | Fri 06/09/19 | 19 | | | | 21 | * | T25 HV 250 kV
feedthrough
complete | 0 days | Mon
09/09/19 | Mon
09/09/19 | 20 | | 09/09 | | 22 | * | T20 ACL HV review | 0 days | Mon 01/04/1 | Mon 01/04/1 | ĺ | | 01/04 | | 23 | * | T26/27 1/2 scale
electrode prototype
design | 14 days | Mon
01/04/19 | Thu
18/04/19 | 22,6 | | | | 24 | * | T26/27 1/2 scale
electrode production | | Fri 19/04/19 | Thu
30/05/19 | 23 | | | | 25 | * | T26/27 1/2 scale
electrode testing +
modifications | 19 days | Tue
10/09/19 | Fri 04/10/19 | 24,21 | | | | 26 | * | ACL HV review 2 | 0 days | Mon 07/10/1 | Mon 07/10/1 | 25 | | ₹ 07/10 | | 27 | * | T26/27 Electrodes
ordered | 0 days | Mon
21/10/19 | Mon
21/10/19 | 26,9 | | 21/10 | | 28 | * | T26/27 Electrodes
machining | 45 days | Mon
21/10/19 | Fri 20/12/19 | 27 | | | | 29 | * | T26/27 Electrodes
delivery | 50 days | Mon
23/12/19 | Fri 28/02/20 | 28 | | | | 30 | * | T26/27 Electrodes +
ground rings
magnetic testing | 45 days | Mon
02/03/20 | Fri 01/05/20 | 29,10 | | ************************************** | | 31 | * | T26/27 Electrodes coating | | Mon
04/05/20 | Fri 12/06/20 | 30 | | | | 32 | * | T26/27 Electrodes
delivered | 0 days | Mon
15/06/20 | Mon
15/06/20 | 31 | | † | | | | | | | | | | | # Budget | | Task Definition | Task S | SubTask | Status | Responsible | Responsible | Manpower | Manpower | Manpower | Latimate | Funded | Spent | Remark | |---------------------------------|--|--------|---------|--------|-------------|-----------------------|------------|-----------|------------|----------|---------|------------|-----------------------------------| | updated Version | Main coordinator | ID r | number | Marker | institution | person | estimate | available | spent | kCHF | kCHF | kCHF | | | 12/11/2018 | | | | | | | pers.month | PM | PM | | | | | | Florian Piegsa | | | | | | | 2019/20 | 2019/20 | up to 2018 | 2019/20 | 2019/20 | up to 2018 | Precession chamber Coordination | Coordination: UB - Florian Piegsa | | | | | | | | | | | | | | recession enamber coordination | Interface Management to UCN Guides (Task 21) | T20 | 1 | ONG | UB / PSI | F. Piegsa / B. Lauss | 1 | 0 | 0 | | | | | | | Interface Management to Vacuum Vessel (Task 23) | T20 | 2 | ONG | UB / LPC | F. Piegsa / T. Lefort | 1 | 0 | 0 | | | | | | | Interface Management to High Voltage (Task 25) | T20 | 3 | ONG | UB | F. Piegsa | 1 | 0 | 0 | | | | | | | Interface Management to High Voltage Electrode (Task 26) | T20 | 5 | ONG | UB | F. Piegsa | 1 | 0 | 0 | | | | | | | Interface Management to High Voltage Electrode (Task 27) | T20 | 6 | ONG | UB | F. Piegsa | 1 | 0 | 0 | | | | | | | Interface Management to Isolator Rings (Task 28) | T20 | 7 | ONG | UB / GUM | F. Piegsa / D. Ries | 1 | 0 | 0 | | | | | | | Interface Management to Corona Ring (Task 29) | T20 | 8 | ONG | UB | F. Piegsa | 1 | 0 | 0 | | | | | | | Interface Management to UCN Shutters (Task 30) | T20 | 9 | ONG | UB / PSI | F. Piegsa / B. Lauss | 1 | 0 | 0 | | | | | | | Interface Management to Leakage Currents (Task 32) | T20 | 10 | ONG | UB / Sussex | F. Piegsa / Sussex | 1 | 0 | 0 | | | | | | | Interface Management to Hg System (Task 33) | T20 | 11 | ONG | UB / LPSC | F. Piegsa / LPSC | 1 | 0 | 0 | | | | | | | Interface Management to 3He System (Task 34) | T20 | 12 | ONG | UB / Sussex | F. Piegsa / Sussex | 1 | 0 | 0 | | | | | | | Interface Management to Cs System (Task 35) | T20 | 13 | ONG | UB / PSI | F. Piegsa / PSI | 1 | 0 | 0 | | | | | | | Interface Management to MSR and coil system | T25 | 14 | ONG | UB / PSI | F. Piegsa / B. Lauss | 1 | 0 | 0 | | | | | | | Interface Management to precession chamber /electrode + corona | T25 | 15 | ONG | UB | F. Piegsa | 1 | 0 | 0 | | | | | | | Interface Management to DAQ | T25 | 16 | ONG | UB / Mainz | F. Piegsa / D. Ries | 1 | 0 | 0 | | | | | | Total | | | | | | | 15 | 0 | | 0 | 0 | 0 | High Voltage | Coordination: UB - Florian Piegsa | | | | | | | | | | | | | | mgn voltage | Specifications | T25 | 1 | ONG | UB | F. Piegsa | 6 | 3 | 1 | | | | | | | HV Concept, FE Simulations and Interfaces | T25 | 2 | ONG | UB | F. Piegsa | 6 | 3 | 1 | | | | | | | HV Powersupply | T25 | 3 | RTM | PSI | P Schmidt-Wellenburg | 2 | 0 | _ | 230 | 115 | 0 | incl. Prototype | | | HV Feedthrough - design / prototype | T25 | 4 | ONG | UB | F. Piegsa | 3 | 2 | 1 | 5 | 5 | | estimate / SNF 200021 181996 Bern | | | HV Feedthrough - construction | T25 | 5 | WPD | UB | F. Piegsa | 3 | 2 | 0 | 20 | 20 | | estimate / SNF 200021_181996 Bern | | | HV Cable | T25 | 6 | ONG | PSI | P. Schmidt-Wellenburg | 2 | 0 | | | | | | | Total | | . = = | - | | | | 22 | 10 | | 255 | 140 | 0 | | # Budget | n2EDM | Task Definition | Task | SubTask | Status | Responsible | Responsible | Manpower | Manpower | Manpower | Estimate | Funded | Spent | Remark | | |-------------------------|-----------------------------------|------|---------|--------|----------------|-------------------------------|------------|-----------|----------|----------|--------|-------|-----------------------------------|---------------| | updated Version | Main coordinator | ID | number | Marker | institution | person | estimate | available | spent | kCHF | kCHF | kCHF | | 1 | | 12/11/2018 | | | | | | | pers.month | PM | PM | Ground electrodes | Coordination: UB - Florian Piegsa | | | | | | | | | | | | | _ | | | Ground electrodes - simulation | T26 | 1 | ONG | UB | F. Piegsa | 4 | 1 | 1 | 0 | 0 | 0 | | | | | Ground electrodes - design | T26 | 2 | ONG | UB | F. Piegsa | 4 | 0 | 1 | 10 | 10 | 0 | Protoyping / SNF 200021_181996 Be | ern | | | Ground electrodes - construction | T26 | 3 | WPD | UB | F. Piegsa | 6 | 0 | 0 | 100 | 0 | 0 | estimate | | | | Ground electrodes - coating | T26 | 4 | WPD | PSI / UB | B. Lauss / F. Piegsa | 4 | 0 | | | | | B. Lauss ? | | | | Magnetic testing | T26 | 5 | ONG | PTB / PSI / UB | A. Schnabel / B. Lauss / F. P | 2 | 0 | 0 | 2 | 0 | 0 | Transport costs ? | 1 | | Total | | | | | | | 20 | 1 | | 112 | 10 | 0 | HV electrodes | Coordination: UB - Florian Piegsa | | | | | | | | | | | | | | | | HV electrode - simulation | T27 | 1 | ONG | UB | F. Piegsa | 4 | 1 | 1 | 0 | 0 | 0 | | | | | HV electrode - design | T27 | 2 | ONG | UB | F. Piegsa | 4 | 0 | 1 | 10 | 10 | 0 | Protoyping / SNF 200021_181996 Be | ern | | | HV electrode - construction | T27 | 3 | WPD | UB | F. Piegsa | 6 | 0 | 0 | 50 | 0 | 0 | estimate | | | | HV electrode - coating | T27 | 4 | WPD | PSI / UB | B. Lauss / F. Piegsa | 4 | 0 | | | | | B. Lauss ? | | | | Magnetic testing | T27 | 5 | ONG | PTB / PSI / UB | A. Schnabel / B. Lauss / F. P | | 0 | 0 | 2 | 0 | 0 | Transport costs ? | | | Total | | | | | | | 20 | 1 | | 62 | 10 | 0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Corona and ground rings | Coordination: UB - Florian Piegsa | 700 | _ | | | 5.00 | | | _ | | | | | _ | | | Corona ring - simulation | T29 | 1 | ONG | UB | F. Piegsa | 2 | | 1 | 0 | 0 | 0 | | | | | Corona ring - design | T29 | 2 | ONG | UB | F. Piegsa | 2 | | 1 | 5 | 0 | 0 | | | | | Corona ring - construction | T29 | 3 | WPD | UB | F. Piegsa | 4 | | 0 | 5 | 0 | 0 | | | | | Magnetic testing | T29 | 4 | WPD | UB | F. Piegsa | 2 | | 0 | 2 | 0 | 0 | Transport costs ? | | | Total | | | | | | | 10 | 0 | | 12 | 0 | 0 | _ | _ | | TOTAL | | | | | | | 805 | 585 | | 5348 | 4437 | 1480 | | ı | | | | | | | | | | | | | | | | $\overline{}$ | ### Overview Comsol design from Andrew Mullins | Parameters | Values and comments | |----------------------------|-------------------------------------| | Radius of HV/Gr | HV ≥ 47 cm
Gr ~ HV + 3 or 4 cm | | Thickness HV/Gr | HV>4cm
Gr~ 3cm with sphere | | Thickness of the insulator | >2cm | | Corona HV | Asymmetry 1
Size [1,1.2] | | Protection cage | Yes ~ 3 rings ? | | Feedthrough | On going | | Groove | deep outside fillet
Square shape | | Quartz window | Insulator thickness | #### Johnson noise - Simulation performed by Pin-Jung Chiu - Precession period of 200s - Linear spectral density of the JNN created by 2 electrodes, $B_{N,z}$, at the center of the chamber, z = 0, with $f = 2.5 \times 10^{-3}$ Hz. #### Gradiometer #### The sample minus the background: Fig. 1. Internal part of the EDM set-up. The permalloy shield, vacuum chamber, neutron polarizer and detection system are not shown. I is the input UCN guide, 2 is the insulating section of neutron guide, 3 are the entrance shutters, 4 is the output UCN guide, 5 are the upper and lower lids of neutron storage chambers, 6 is the central high voltage electrode, 7 is the quartz insulating ring, 8 is the vacuum high voltage input, 9 is the grounding bar of the upper lid, 10 is a part of the oscillating field coil, 11 is the lower Cs optically pumped magnetometer, 12 is the upper magnetometer, 13 is the shaft for shutter operation. High voltage achieved: 120-150kV, average electric field +14.4kV/cm. https://www.nature.com/news/dynamo-maker-ready-to-roll-1.9582