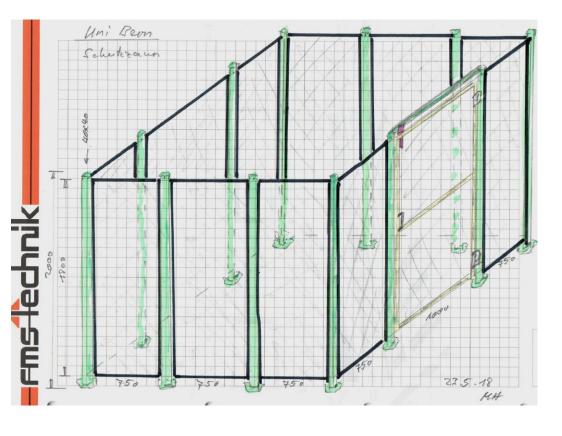
High-Voltage Plans in Bern

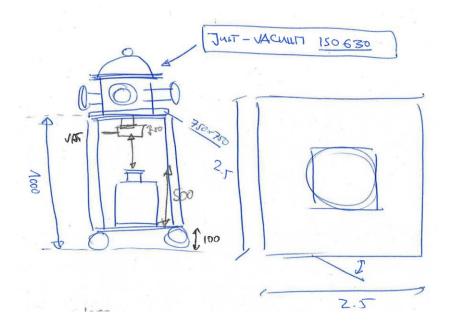
Florian Piegsa

Albert Einstein Center for Fundamental Physics University of Bern, Switzerland

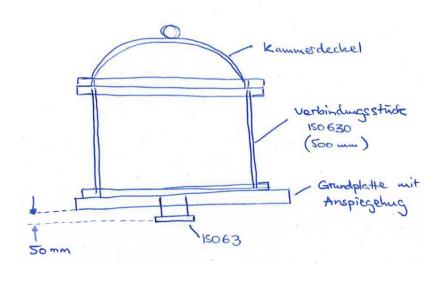

- ► Estelle (about 40%, PhD)
- Jacob Thorne (1. Aug. as PostDoc)
- Andrew Mullins (1. Sept. as Fulbright Fellow / Bachelor)
- ► Applied for 1 PhD and ½ Postdoc position (SNSF)

High-Voltage Laboratory Prototype development and testing

HV-Laboratory

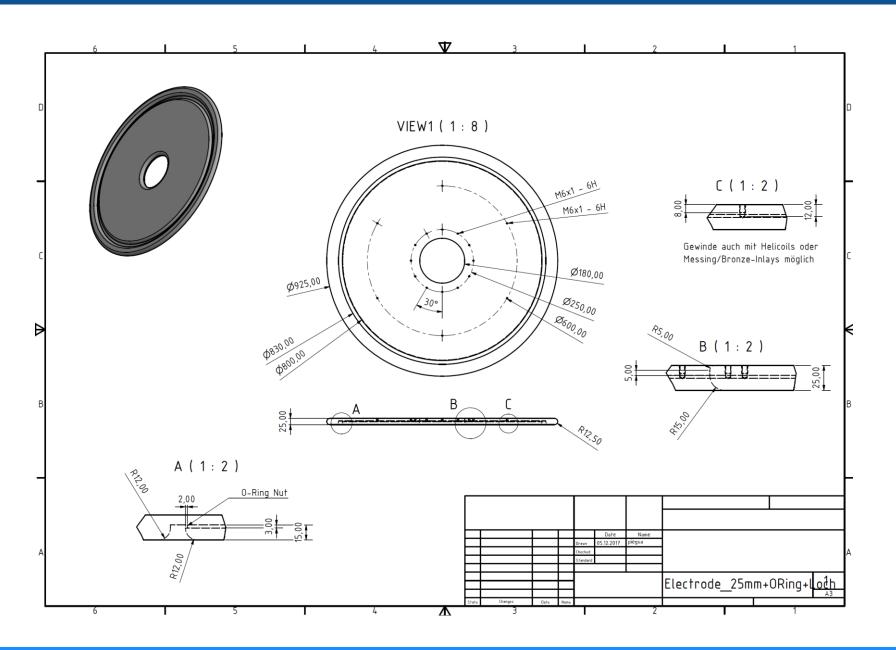

Laboratory-Infrastructure

- Faraday Cage (2.3 x 2.5 m²)
- Vaccum Vessel (ISO-630)
- Turbo Pump (Pfeiffer HiPace)
- 200 fps CCD camera (Thorlabs)
- HV-Powersupply (120 kV, ETHZ)
- HV-Powersupply (+-35 kV, FUG, 20 weeks)
- Leakage current meas. hardware
- Crane + Support-Structure/Table


Laboratory-Infrastructure

Support/Table incl. Turbo Pump

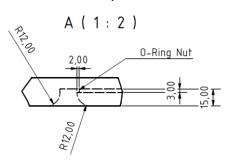
Faraday Cage (top view)


ISO-630 Vaccum Test Vessel

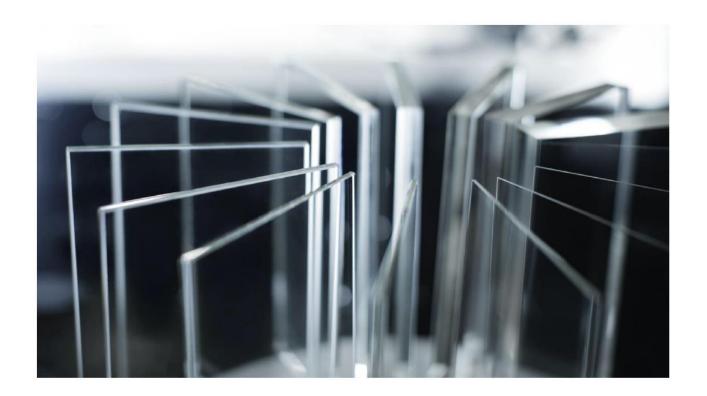
Add several different ISO and KF access flanges

Glass Electrodes Non metallic – reduce Johnson noise

Electrode with typical Features


HV-Electrodes from Glass

Material:


- Borofloat is best candidate (price, manchining, and size)
- Zerodur, NBK-7 (BorKron), Fused Silica all much more expensive and no standard dimensions
- Normal Float (quality worse than Borofloat, Fe impurities)

Machining:

- Double sided polishing will not be possible in these dimensions (max. 600 mm, Schott Yverdon has already largest machines in Europe)
- No threads except metal inlays
- Thickness variation / waviness (next slide)
- O-ring groove (Schott: possible but difficult, Swissneutroncis idea: flat seal)
- Special tools for machining glass need to be ordered (about 2 kCHF per tool, not too many different radii etc.)
- Coating (Al, Cu, DLC) ?

Schott Borofloat

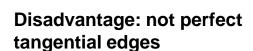
Standard thicknesses	
Nominal thickness	Tolerance
(mm)	(mm)
0.70	± 0.05
1.10	± 0.05
1.75	± 0.05
2.00	± 0.05
2.25	± 0.05
2.75	± 0.10
3.30	± 0.20
3.80	± 0.20
5.00	± 0.20
5.50	± 0.20
6.50	± 0.20
7.50	± 0.30
9.00	± 0.30
11.00	± 0.30
13.00	± 0.30
15.00	± 0.40
16.00	± 0.50
18.00	± 0.50
19.00	± 0.50
20.00	± 0.70
21.00	± 0.70
25.40	± 1.00

Sheet sizes for standard thicknesses	
Nominal thickness (mm)	Standard size width x length (mm)
0.70 - 25.40	1,150 x 850
16.00 – 21.00	1,700 x 1,300
0.70 - 15.00	2,300 x 1,700

Thickness variation / Waviness

Semi-Circle

20 mm



C-shaped edge

steps at the edges

Thickness variation

Glass Electrodes – Companies

Huge experience but maybe less skills than SwissNeutronics (also concerning neutron optics)

Get new machine in Jan. 2019 - then 1 m possible Can glue glass (UV-glue) – stacks of glass plates

Polishing (one sided)

IFASO GmbH (spin-off TH Deggendorf)

Polishing of glass blanks for ELT, but no further machining No definate offer yet Nice surfaces, but expensive, long delivery and:

"Sehr geehrter Herr Piegsa,

bei unserer Anwendung ist der Bezug von Vorder- zu Rückseite nicht erheblich maßgeblich, da die Spiegel bei der Montage ausjustiert werden. Bei 1 m Durchmesser würde ich von einem Keilfehler von etwa 0,4 mm ausgehen. Die Seiten an sich alleine betrachtet können natürlich besser 10 µm in der Form/ Welligkeit gefertigt werden.

Mit freundlichen Grüßen Heiko Biskup"

- ► Continue Setting up High-Voltage Lab and Infrastructure (Faraday cage, vacuum vessel, support table ...)
- Start building HV tools/parts (ballast resistor, leakage current, feedthrough, ...)
- Start designing/building prototypes Al and glass electrodes
- Question/Discussion: Is waviness/distance variation of the glass electrodes a problem ? Can it cause a systematic effect (1 mm / 120 mm < 1%) ?</p>

Thank you for your attention.