Incoherent Scattering of ¹⁹⁹Hg Another Physics Measurement

Florian Piegsa

Albert Einstein Center for Fundamental Physics University of Bern, Switzerland

FOR FUNDAMENTAL PHYSICS

Motivation

- ► Neutrons interact with polarized ¹⁹⁹Hg atoms via strong interaction
- ► Interaction large enough to be measured potential system. effect
- Sign of the pseudomagnetic effect/interaction is unknown
- Can be considered as a "calibration measurement" non-zero

LINK: <a href="https://nedmpsi.atlassian.net/wiki/display/nedmcoll/2016/10/28/Spin-Dependent-Interaction+of+UCN%27s+with+Polarized+199Hg?focusedCommentId=100368386#comment-100368886#comment-10036886#comment-10036886#comment-10036886#comment-10036886#comment-10036886#comment-10036886#comment-10036886

Neutron-Hg Scattering Length

	Neutron scattering lengths and cross sections									
Isotope cond		Coh b Inc b		Coh xs	Inc xs Scatt x		Abs xs			
Hg		12.692		20.24	6.6	26.8	372.3(4.0)			
196Hg	0.2	30.3(1.0)	0	115.(8.)	0	115.(8.)	3080.(180.)			
198Hg	10.1		0		0		2			
199Hg	17	16.9	(+/-)15.5	36.(2.)	30.(3.)	66.(2.)	2150.(48.)			
200Hg	23.1		0		0		<60.			
201Hg	13.2						7.8(2.0)			
202Hg	29.6		0		0	9.828	4.89			
204Hg	6.8		0		0		0.43			

Source: NIST

- ► The ¹⁹⁹Hg incoherent scattering length value of ±15.5(8) fm is rather large (¹H: 25.3 fm), meaning this could lead to a potentially strong effect
- ► And the sign of the scattering length is unknown $\sigma_s = 4\pi(|b_c|^2 + |b_i|^2)$

Pseudomagnetic Field of 199Hg

$$B^* = -rac{4\pi\hbar}{m_{
m n}\gamma_{
m n}}
ho b_i P \sqrt{rac{I}{I+1}}$$

$$b_{i,Hg} pprox \pm 15.5 \, {
m fm}, \quad I=1/2$$
 $ho_{Hg} pprox 10^{16} \, {
m m}^{-3} \quad {
m (about } 4 imes 10^{-7} \, {
m mbar})$ $ho_{Hg} pprox 30\%$ $ho_{Hg} pprox 30\%$ $ho_{Hg} = 1/2 \, {
m mbar}$ $ho_{Hg} = 1/2 \,$

Potential Systematic Effect

Imperfect $\pi/2$ -flip pulse causes a residual Hg-polarization along the main magnetic field axis.

It could potentially be non-equal for E up/down.

$$\Delta \eta = \eta_+ - \eta_-$$

$$B_{false} \approx 400 \; \mathrm{fT} \cdot P_{Hg} \cdot \Delta \eta$$

▶ To keep the false EDM below 10^{-27} ecm: $B_{false} < 0.3$ fT (assuming E = 10 kV/cm). And with $P_{Hg} = 30\%$, this yields a limit of:

$$\Delta \eta < 2 \text{ mrad}$$

► A corresponding limit for the Hg-pulse (equality) precision about 10⁻³.

Measurements in 2016 & New Proposal

- Measurements in 2016 (PSW):
 - Test measurements were performed total of 2-3 days
 - Problems with laser (power stabilization) almost entire time
 - Proposed SE method was not suitable to detect effect

New Proposal:

Use standard Ramsey method with Hg-laser

Effect (typical): 2.5 µHz (P = 30%, ρ = 10⁻¹⁶ m⁻³, π /4-pulse)

Stat. sensitivity per cycle: < 10 µHz

Two days are enough to measure effect on < 20% level

Note: Effect of Hg-Pulse on Neutron Spin

Maximum tilt angle of neutron spin due to Hg-Pulse:

$$heta^* pprox 2 rac{arphi}{ au} rac{R}{1+R} rac{1}{\gamma_{Hg} B_0}$$
 R = - 3.85

$$R = -3.85$$

The tilt angle and the related (random) false effect is constant for constant $\omega_1 \propto \frac{\varphi}{\epsilon}$

Typical: $\theta^* = 25 \text{ mrad}$ ($\tau = 2 \text{ s}, \varphi = \text{Pi/2}, B_0 = 1 \mu\text{T}$)

False eff.: $16 \mu Hz$ (with T=180 s)

Can this effect be directly measured ???

MAGNETIC INTERACTION:

$$B_{M}=\mu_{0}rac{\hbar}{2}\gamma_{Hg}
ho_{Hg}P_{Hg}$$

$$\gamma_{Hg}pprox 2\pi imes 7.6$$
 MHz/T $ho_{Hg}pprox 10^{16}$ m⁻³ (about 4 × 10⁻⁷ mbar) $ho_{Hg}pprox 30\%$

STRONG INTERACTION:

$$b = b_c + rac{2b_i}{\sqrt{I(I+1)}} \vec{s} \cdot \vec{I}$$
 $\vec{I} = \text{spin of the nucleus}$ $b_c = \text{coherent bound scale}$

Bound Scattering Length

 \vec{s} = spin of the neutron

 b_c = coherent bound scattering length

 b_i = incoherent bound scattering length

Spin-Dependent/Incoherent Part of the Fermi-Potential:

$$V_{F,i} = \frac{4\pi\hbar}{m_{\rm n}\gamma_{\rm n}} \, \rho b_i \, \sqrt{\frac{I}{I+1}} \vec{\mu}_{\rm n} \cdot \vec{P} = -\, \vec{\mu}_{\rm n} \cdot \vec{B}^*$$

Pseudomagnetic Field:

$$B^* = -rac{4\pi\hbar}{m_{
m n}\gamma_{
m n}}
ho b_i P \sqrt{rac{I}{I+1}} \propto
ho b_i P$$

For instance, the protons in solid polystyrene have a number density of about 0.08 mol/ml, which will create a pseudomagnetic field of **about 3 Tesla**, if the proton spin polarisation is 100%.

So what about the ¹⁹⁹Hg Spin-Dependent/Incoherent Scattering?

Neutron-Hg Scattering Length

	Neutron scattering lengths and cross sections									
Isotope	Isotope conc Coh b		Inc b	Coh xs	Inc xs	Scatt xs	Abs xs			
Hg		12.692		20.24	6.6	26.8	372.3(4.0)			
196Hg	0.2	30.3(1.0)	0	115.(8.)	0	115.(8.)	3080.(180.)			
198Hg	10.1		0		0		2			
199Hg	17	16.9	(+/-)15.5	36.(2.)	30.(3.)	66.(2.)	2150.(48.)			
200Hg	23.1		0		0		<60.			
201Hg	13.2						7.8(2.0)			
202Hg	29.6		0		0	9.828	4.89			
204Hg	6.8		0		0		0.43			

Source: NIST

- ► The ¹⁹⁹Hg incoherent scattering length value of ±15.5(8) fm is rather large (¹H: 25.3 fm), meaning this could lead to a potentially strong effect
- ► And the sign of the scattering length is unknown $\sigma_s = 4\pi(|b_c|^2 + |b_i|^2)$

Pseudomagnetic Field of 199Hg

$$B^* = -rac{4\pi\hbar}{m_{
m n}\gamma_{
m n}}
ho b_i P \sqrt{rac{I}{I+1}}$$

$$egin{aligned} b_{i,Hg} &pprox \pm 15.5 \, ext{fm}, \quad I=1/2 \
ho_{Hg} &pprox 10^{16} \, ext{m}^{-3} \quad ext{(about 4 × 10^{-7} mbar)} \ P_{Hg} &pprox 30\% \end{aligned}
ight. egin{aligned} B^* &pprox \pm 120 \, ext{fT} &\gg B_M \end{aligned}$$

- Neutrons sense a pseudomagnetic field due to the polarized Hg nuclei. This field is maximum if spins are aligned with B_0 -field, e.g. before Hg-pulse.
- ► And it is large enough to be measured with the UCN Ramsey apparatus.

Potential Systematic Effect

Imperfect $\pi/2$ -flip pulse causes a residual Hg-polarization along the main magnetic field axis.

It could potentially be non-equal for E up/down.

$$\Delta \eta = \eta_+ - \eta_-$$

$$B_{false} \approx 400 \; \mathrm{fT} \cdot P_{Hg} \cdot \Delta \eta$$

▶ To keep the false EDM below 10^{-27} ecm: $B_{false} < 0.3$ fT (assuming E = 10 kV/cm). And with $P_{Hg} = 30\%$, this yields a limit of:

$$\Delta \eta < 2 \text{ mrad}$$

► A corresponding limit for the Hg-pulse (equality) precision about 10⁻³.

Bloch-Siegert Shift

How to Measure the Effect:

- Standard nEDM Runs (without E-field), however ...
- Modify Hg RF-pulse to a 0- or π-pulse (amplitude and/or pulse-length)
 - Incoherent scattering effect is maximum
 - No Hg-comagnetometer signal
- ► Or modify Hg RF-pulse to a $\pi/4$ or $3\pi/4$ -pulse
 - Incoherent scattering effect reduced by a factor $\sqrt{2}$ (component along B_0) to around 80 fT
 - Hg-comagnetometry possible, however with reduced signal visibility
 - (in addition one can intentionally vary the Hg-density/Hg-polarisation)

Measurement Proposal

What can we learn from this:

- Physics Result: Sign of the Hg incoherent scattering length (signs !!)
- ► One measures a quantity proportional to $\rho b_{i,Hg} P_{Hg}$ So if one later is able to access the Hg density and polarisation (offline), e.g. with the lase, one can determine the value for $b_{i,Hg}$
- ► Handle on a possible systematic effect One can later (offline) investigate the Hg RF-pulse as a function of the electric field polarity
- Other?

Open Questions/Comments (by Guillaume)

... after thinking about it I have three comments:

- 1) Do we actually know the initial direction of the Hg spins? It depends whether the optical pumping is done with σ_{+} or σ_{-} helicity of the light.
- 2) What about precise knowledge of the mercury density in the chamber?
 [...] Therefore I think a clean measurement should be done with the laser in spring 2017.
- 3) [...] the neutron wavelength is much larger than the distance between the Hg atoms. Are you sure the pseudomagnetic description really applies here?

Open Questions/Comments (by Guillaume)

... after thinking about it I have three comments:

- 1) Do we actually know the initial direction of the Hg spins? It depends whether the optical pumping is done with σ_{+} or σ_{-} helicity of the light.
- 2) What about precise knowledge of the mercury density in the chamber?
 [...] Therefore I think a clean measurement should be done with the laser in spring 2017.
- 3) [...] the neutron wavelength is much larger than the distance between the Hg atoms. Are you sure the pseudomagnetic description really applies here?

	Wavlength	Atom. distance	Factor
UCN	0.1 µm	1-5 μm	10-50
Cold Neutron	0.4 nm	1 nm	2.5

Summary

- Polarized Hg nuclei produce a pseudomagnetic field of order 100 fT via the spin-dependent strong interaction
- ► This can potentially cause a systematic effect
- ► The (sign of the) pseudomagnetic field can be measured within a few days – Physics result

Elem. or Isot.	Natural Abundance (Atom %)	Atomic Mass or Weight	Half-Life/ Resonance Width (MeV)	Decay Mode/ Energy (/MeV)	Particle Energy/ Intensity (MeV/%)	Spin (h/2π)	Nuclear Magnetic Mom. (nm)	Elect. Quadr. Mom. (b)	γ-Energy/ Intensity (MeV/%)
¹⁹⁶ Hg	0.155(12)	195.96583	> 2.5 × 10 ¹⁸ a	α		0+			
197mHg			23.8 h	I.T./(93)/0.2989		13/2+	-1.027684	+1.2	Hg k x-ray
									Au k x-ray
									0.13398
¹⁹⁷ Hg		196.96721	2.69 d	EC/0.600		1/2-	+0.527374		Au k x-ray
									0.07735
¹⁹⁸ Hg	10.038(16)	197.966769				0+			
^{199m} Hg			42.7 m	I.T./0.532		13/2+	-1.014703	+1.2	Hg k x-ray
									0.15841
¹⁹⁹ Hg	16.938(39)	198.968281				1/2-	+0.505885		
²⁰⁰ Hg	23.138(65)	199.968327				0+			
²⁰¹ Hg	13.170(66)	200.970303				3/2-	-0.560226	+0.37	
²⁰² Hg	29.743(89)	201.970643				0+			
²⁰³ Hg		202.972873	46.61 d	β- /0.492	0.213/100	5/2-	+0.8489	+0.34	Tl k x-ray
									0.279188
²⁰⁴ Hg	6.818(35)	203.973494				0+			

commonly used samples

n-PS

d-PS

 $D_20 + d$ -Glycerol EHBA/EDBA-Cr(V)

pseudomagn. phase-shift due to DNP

<u>Sample:</u> d-PS (ARMAR: 98%D) doped with: 2.7x10¹⁹ d-TEMPO/ml thickness = 1.6 mm - 16.12.2005

Measuring time: 45 min each!

How big is the phase-shift ??? approx. 270° + n x 360°

pseudomagn. phase-shift due to DNP

Sample: d-PS (ARMAR: 98%D) doped with: 2.7x10¹⁹ d-TEMPO/ml thickness = 1.6 mm - 16.12.2005

 $P_p = 17\%$ $P_d = 12\%$ (from NMR) $\phi^*_{\text{expect.}} = (1503 \pm 132)^\circ$ $\phi^*_{\text{meas.}} = (1350.2 \pm 1.5)^\circ \rightarrow 10^{-3}$

example for pseudomagnetic precession

- 3 mm thick n-Polystyrene measured at 2.5 Tesla and various temperatures (25.11.05)
- Thermal equilibrium polarisation of proton spins cause pseudomagnetic precession

