Test

From LHEP Wiki
Jump to navigation Jump to search

Testing MathJax:

[math]\displaystyle{ \begin{align} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align} }[/math]

Inline [math]\displaystyle{ x = {-b \pm \sqrt{b^2-4ac} \over 2a} }[/math]

When $a \ne 0$, there are two solutions to $ax^2 + bx + c = 0$ and they are

$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$